Quarterly Report Massachusetts Institute of Technology GAGE Facility GPS Data Analysis Center Coordinator And GAGE Facility GAMIT/GLOBK Community Support

Thomas Herring, Robert King and Mike Floyd

Period: 2015/04/01-2015/06/30

Table of Contents

Summary	2
GPS Analysis of Level 2a and 2b products	
Level 2a products: Rapid products	
Level 2a products: Final products	
Level 2a products: 12-week, 26-week supplement products	2
Analysis of Final products: March 15, 2015 and June 13, 2015	2
Analysis of large RMS sites	
GLOBK Apriori coordinate file and earthquake files	17
Snapshot velocity field analysis from the reprocessed PBO analysis	18
Earthquake Analyses: 2015/04/01-2015/06/30.	
Antenna Change Offsets: 2015/04/01-2015/06/30	29
Reanalysis with updated NMT Yucca Mountain sites	33
Script updates	
GAMIT/GLOBK Community Support	

Summary

Under the GAGE Facility Data Analysis subcontract, MIT has been combining results from the New Mexico Tech (NMT) and Central Washington University (CWU). In this report, we show analyses of the data processing for the period 04/01/2015 to 06/13/2015, time series velocity field analyses for the GAGE reprocessing analyses (1996-2015), earthquake effects during the interval (only one detected event that effected only one site, M6.7 111km NNW of Chirikof Island at 2015 05 29 07 01), position offsets from antenna changes, comparison between results from the previous quarter. Because the quarterly reports are due near the start of the month and the data used in the finals processing has an age between 2-3 weeks, early in the month the finals results the last two weeks of the previous month are not available. For this quarter the last finals results were for June 13, 2015. No new "bad" sites were added this quarter. Currently there are 94 sites in the list. We have retained the list and explanation from previous quarters for completeness of this report. Associated with the report are the ASCII text files that are linked into this document.

Under the GAGE Facility GAMIT/GLOBK Community Support we report on activities during this quarter.

GPS Analysis of Level 2a and 2b products

Level 2a products: Rapid products

Final and rapid level 2a products have been in general generated routinely during this quarter. The description of these products, the delivery schedule and the delivery list remain unchanged from the previous quarter and will not be reported here.

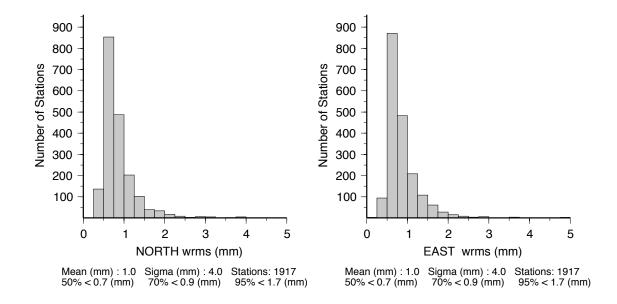
Level 2a products: Final products

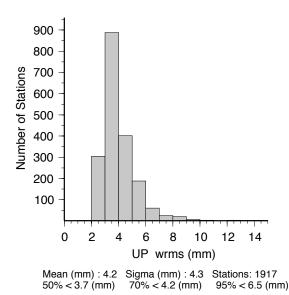
The final products are generated weekly and are based on the final IGS orbits. The description of these products, the delivery schedule and the delivery list remain unchanged from the previous quarter and will not be reported here. Data volumes being transferred is slowly increasing since a number of new sites are being added. In this quarter 1917 sites were processed compared to 1882 for the previous quarter.

Level 2a products: 12-week, 26-week supplement products

Each week we also process the Supplemental (12-week latency) and six month supplemental (26-week latency) analyses from the ACs. The delivery schedule for these products is also unchanged.

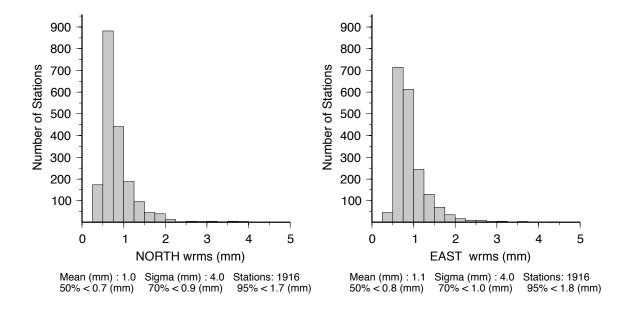
Analysis of Final products: March 15, 2015 and June 13, 2015

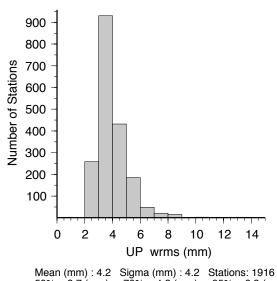

Each month, we submit reports of the statistics of the PBO combined analyses and estimates of the latest velocity fields in the NAM08 reference frame based on the time


series analysis of data between 1996 and month preceding the report (we need to allow 2-3 weeks for the generation of the final products). For this report, we generated the statistics using the ~3 months of results generated between March 15, 2015 and June 13, 2015. These results are summarized in table 1 and figures 1-3.

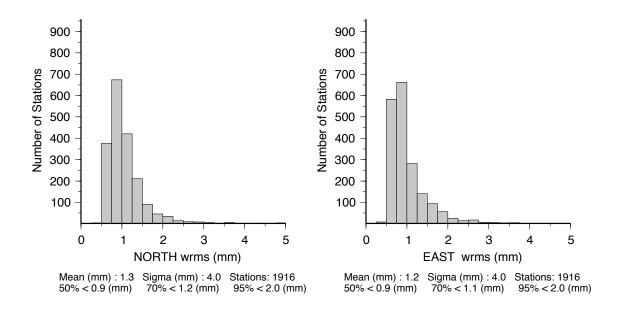
For the three months of the final position time series generated by NMT, CWU and combination of the two (PBO), we fit linear trends and annual signals and compute the RMS scatters of the position residuals in north, east and up for each site in the analysis. Our first analysis of the distribution of these RMS scatters by analysis center and the combination. Table 1 shows the median (50%), 70% and 95% limits for the RMS scatters for PBO, NMT and CWU. The median horizontal RMS scatters are less than or equal 0.9 mm for all centers and as low as 0.7 mm for NMT and PBO north and PBO east components. The up RMS scatters are less than or equal 4.3 mm and as low as 3.7 mm. These statistics are similar to last quarter. Seasonal changes in atmospheric delay properties will introduce small variations in these values quarter to quarter with this quarter being overall better than last quarter. In the NAM08 frame realization, scale changes are not estimated. If scale changes were estimated, the up scatter would be reduced but the sum of scale change RMS and the lower height scatter would equal the values shown in Table 1. The detailed histograms of the RMS scatters are shown in Figures 1-3 for PBO, NMT and CWU.

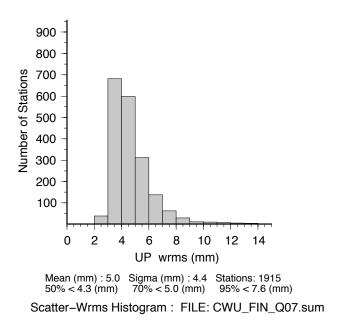
Table 1: Statistics of the fits of 1917, 1916 and 1916 sites for PBO, NMT and CWU analyzed in the finals analysis between March 15, 2015 and June 13, 2015. Histograms of the RMS scatters are shown in Figure 1-3.


Center	North (mm)	East (mm)	Up (mm)
Median (50%)			
PBO	0.7	0.7	3.7
NMT	0.7	0.8	3.7
CWU	0.9	0.9	4.3
70%			
PBO	0.9	0.9	4.2
NMT	0.9	1.0	4.2
CWU	1.2	1.1	5.0
95%			
PBO	1.7	1.7	6.5
NMT	1.7	1.8	6.3
CWU	2.0	2.0	7.6



Scatter-Wrms Histogram : FILE: PBO_FIN_Q07.sum


Figure 1: PBO combined solution histograms of the North, East and Up RMS scatters of the position residuals for 1917 sites analyzed between March 15, 2015 and June 13, 2015. Linear trends and annual signals were estimated from the time series.

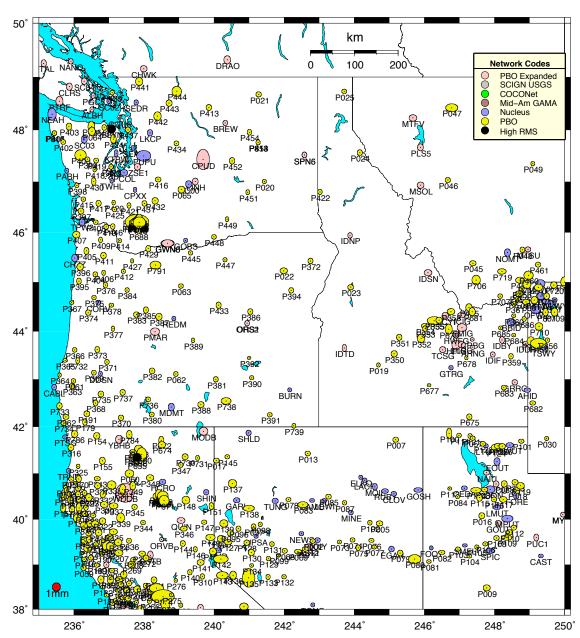


50% < 3.7 (mm) 70% < 4.2 (mm) 95% < 6.3 (mm) Scatter–Wrms Histogram : FILE: NMT_FIN_Q07.sum

Figure 2: NMT combined solution histograms of the North, East and Up RMS scatters of the position residuals for 1916 sites analyzed between March 15, 2015 and June 13, 2015. Linear trends and annual signals were estimated from the time series.

Figure 3: CWU combined solution histograms of the North, East and Up RMS scatters of the position residuals for 1916 sites analyzed between March 15, 2015 and June 13, 2015. Linear trends and annual signals were estimated from the time series.

For the PBO combined analysis, we also evaluate the RMS scatters of the position estimates by network type. The figures below are based on our monthly submissions but here we use nominally 3 months of data to evaluate the RMS scatters. In Table 2, we give the median, 70 and 95 percentile limits on the RMS scatters. The geographical distributions of the RMS scatters by network type are shown in Figures 4-9. The values


plotted are given in <u>PBO_FIN_Q07.tab</u>. There are 1917 sites in the file. The contents of the files is of this form:

Tabular Position RMS scatters created from PBO_FIN_Q06.sum ${\rm ChiN/E/U}$ are square root of chisquared degree of freedom of the fits. Values of ${\rm ChiN/E/U}$ near unity indicate that the estimated error bars are consistent the scatter of the position estimates

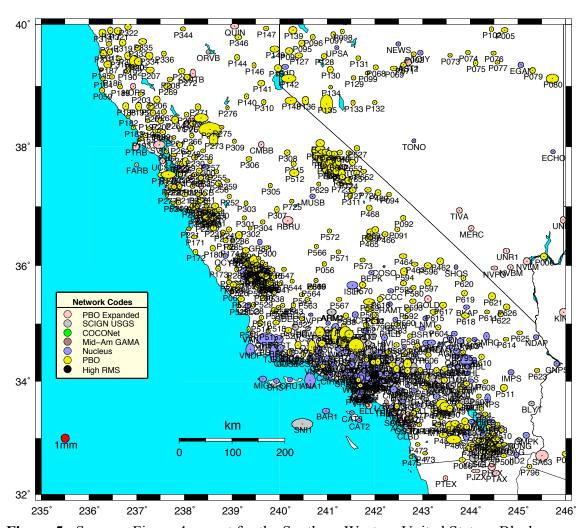

.Site	#	N (mm)	ChiN	E (mm)	ChiE	U (mm)	ChiU	Years
1LSU	86	0.9	0.52	1.4	0.79	4.7	0.66	12.14
1NSU	90	1.0	0.54	1.0	0.55	4.1	0.57	11.41
1ULM	90	0.8	0.47	0.8	0.47	3.7	0.56	12.00
70DM	90	0.7	0.38	0.6	0.42	4.0	0.60	14.15
•••								
ZLA1	88	1.0	0.46	1.0	0.57	4.3	0.56	12.03
ZME1	90	1.0	0.50	0.9	0.48	4.3	0.55	12.25
ZMP1	90	0.7	0.34	0.7	0.45	4.4	0.65	12.50
ZNY1	90	0.8	0.41	0.7	0.42	3.5	0.50	12.41
ZSE1	90	0.8	0.35	0.8	0.45	3.8	0.52	12.41
$\mathtt{ZTL4}$	90	0.8	0.43	1.1	0.61	4.1	0.54	12.60

Table 2: RMS scatter of the position residuals for the PBO combined solution between March 15, 2015 and June 13, 2015 divided by network type. The division of networks is based on the JAVA script unavcoMetdata.jar with network codes PBO, Nucleus, Mid-SCIGN_USGS, America_GAMA, Expanded_PBO, COCONet and Expanded_PBO

Network	North (mm)	East (mm)	Up (mm)	#Sites
Median (50%)				
PBO	0.7	0.7	3.4	889
NUCLEUS	0.6	0.7	3.2	209
USGS SCIGN	0.7	0.8	3.5	129
Expanded	0.8	0.8	4.1	576
GAMA	0.7	0.8	4.2	13
COCO Net	1.3	1.4	5.7	101
70 %				
PBO	0.8	0.8	3.8	
NUCLEUS	0.7	0.7	3.5	
USGS SCIGN	0.8	1.0	3.9	
Expanded	1.0	1.0	4.5	
GAMA	0.8	0.8	4.4	
COCO Net	1.6	1.7	6.7	
95%				
PBO	1.5	1.4	6.0	
NUCLEUS	1.3	1.1	5.6	
USGS SCIGN	1.5	1.4	4.9	
Expanded	1.7	1.7	6.0	
GAMA	1.0	0.9	4.5	
COCO Net	2.9	3.0	10.0	

Figure 4: Distribution of the RMS scatters of horizontal position estimates from the PBO combined analysis for the Northern Western United States. The color of the ellipses that give the north and east RMS scatters denotes the network given by the legend in the figure. The small red circle shows the size of 1 mm scatters. Sites shown with black circles have combined RMS scatters in north and east greater than 5 mm or are sites that have no data during this 3-month interval.

Figure 5: Same as Figure 4 except for the Southern Western United States. Black circles in the Yucca mountain region have no data during this 3-month period.

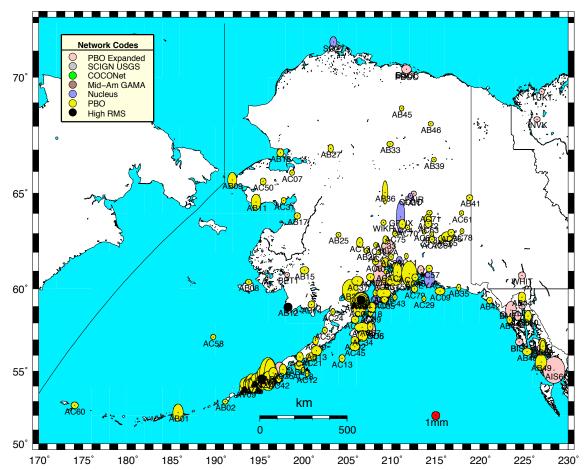


Figure 6: Same as Figure 4 except for the Alaskan region.

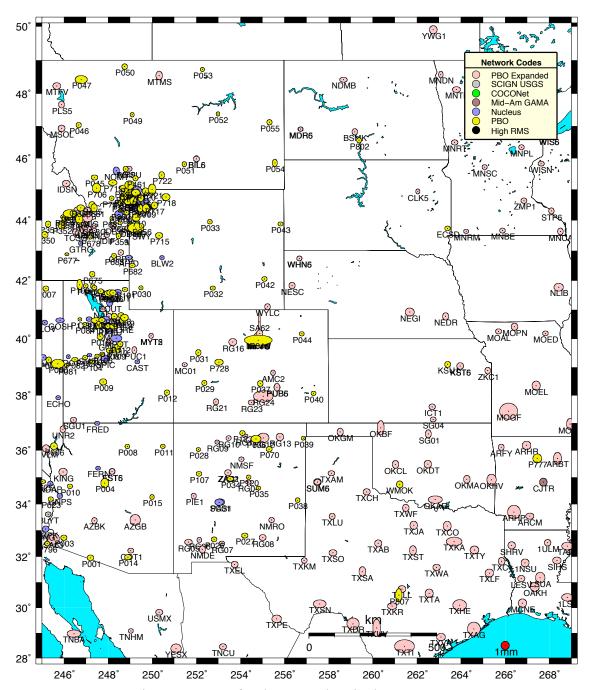


Figure 7: Same as Figure 4 except for the Central United States

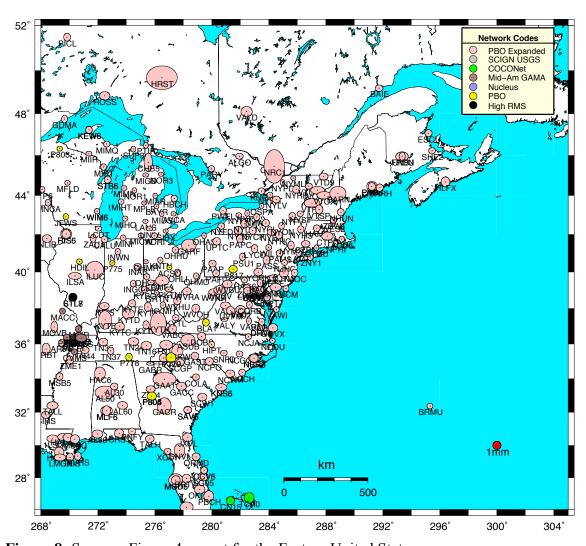
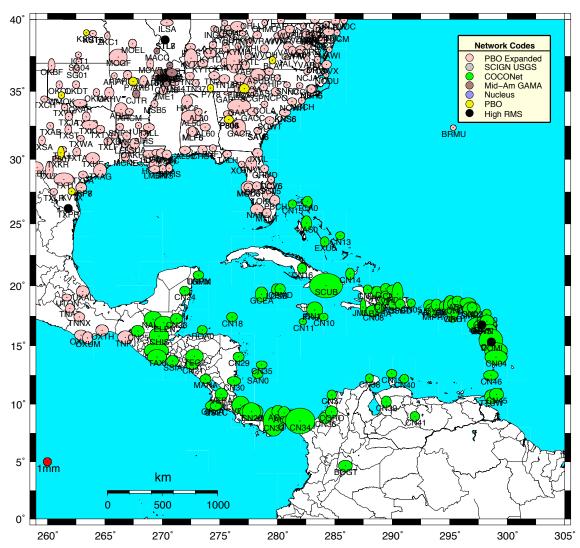



Figure 8: Same as Figure 4 except for the Eastern United States

Figure 9: Same as Figure 4 except for the Caribbean region.

Analysis of large RMS sites

In Table 3, reproduced from earlier quarters, gives a summary of the qualitative description of the nature of the times series of all the sites with large RMS scatters (black circles shown in Figures 4-9). Snow is often the reason and falls into types: one class where the snow is systematic for a period of time with normal looking results in between and the other class where it is difficult to see any good data in the time series. For example P665 in in first category and P690 is in the second category. For some sites, it is not clear what is happening at the site. No new sites were added this quarter. There are 94 sites in the table.

Table 3: Description of time series characteristics of sites with high RMS scatter (black symbols on figures above)

		/	
Long	Lat (deg)	Site	Description
(deg)			

198.2537	58.9508	AB12	Snow with some periods of OK data
197.3865	66.8584	AB18	Strange long period systematics with excursions in
			2008 and 20012 (10-15 mm in east)
209.2560	65.0304	AB36	Strange annual
227.1328	56.5848	AB53	Snow events and may be systematic between
			events.
215.4762	59.8685	AC09	Evolving Rate change 2012-2013
212.0004	60.8487	AC14	Snow events; NE look flat in between but height
			may have curvature
211.9068	60.5182	AC16	Snow events; but OK in between but height may
			have curvature as for AC14 (probably annual)
210.6475	60.9292	AC20	Long period N systematic
212.2608	59.8558	AC30	Little data 2007.7-2009.1 with large gap and snow
			systematic
209.3149	62.6712	AC33	Snow with flat in between (systematic snow).
209.2068	59.3758	AC35	Long period N and E systematic
207.3761	60.0815	AC47	Generally systematic; long lived snow.
179.3013	51.3781	AC66	Curvature offset 14/06/23
289.1134	41.7433	ACU6	Offset 06/12/21
297.7861	16.7408	AIRS	Multi-year variations
228.4008	55.0689	AIS6	Bi-modal data separated by ~5-10 mm NE, EQ like
			log 2012/10/28 N, 13/01/06 E offset
297.6595	82.4943	ALRT	Lots of variations, does not quite look like snow but
			maybe.
264.5149	29.3015	ANG1	Slow event ~22 mm N, 6 mm E between
			2004/05/26-2004/06/14, offset near end
210.8677	61.5978	ATW2	Clear E offset from Denali Earthquake, 2002 11 3
			22 12, but much larger decadal systematic
262.2437	30.3117	AUS5	Unknown break 2002 10 12
206.5553	59.3626	AV04	Bad snow but flat in between
206.5773	59.3629	AV05	Little data between 2004.6-2005 and 2005.6-
			2006.1, run off at end
194.1022	54.1531	AV13	Some snow intervals each year
206.5718	59.3474	AV20	Snow; bad winter 2008 and 2010
195.4195	54.5717	AV26	Heavily skewed in U and E
195.2768	54.4924	AV27	Maybe snow. Bad in 2009 winter, systematic 2014.
195.4139	54.4724	AV29	Lots of snow
195.6131	54.8467	AV35	Snow but more random in nature. Looks noisy
			between snow times.
196.2191	54.8315	AV38	Very skewed in N and U. Unknown break: 2011 6
			15 6-7 mm in East.
196.0015		A X / 2 O	Also sharred systematic can 2010 9 2011 5
170.0013	54.8113	AV39	Also skewed, systematic, gap 2010.8-2011.5,
300.3909	54.8113 13.0880	BDOS	Multi-year trends; E 2007-2011 15 mm

			EQ Postseismic?); offset at El Mayor Cucapah
			(10/04/04).
291.9863	46.8684	CARM	Un-modeled breaks
277.7437	9.3517	CN20	Noisy CWU processing; NMT seems OK.
281.9852	8.5489	CN34	Systematic with maybe a tree growing nearby.
240.3261	34.9426	CUHS	Strong loading signal with change around 2011.0
270.3565	35.5414	CVMS	Bad "antenna" 2013/03/18- 2014/02/26. Firm ware
			update on 2014/02/26; +8N,-12E offset.
298.6109	15.3062	DOMI	Noisy site. NMT missing at start of data.
250.6167	-27.1482	EISL	Noisy site
297.8057	16.7948	GERD	Slow slip 2006 and 2010.
242.6021	34.2039	GHRP	Some snow but slow slip in 2007-2007.5
249.4640	44.6136	HVWY	Multiyear systematic: Yellowstone.
240.9918	34.3985	KBRC	Even with bad antenna between 2002/12/04-
			2004/05/25 removed, still multiyear systematic.
208.6498	60.6751	KEN5	Strange multimodal positions in N and E.
208.6498	60.6748	KEN6	Similar behavior to KEN5 suggesting motions are
			real (on same USCG tower apparently).
267.9549	30.2214	KJUN	Maybe bad antenna between 2004/07/29-
			2005/01/25 but no log entries. Offset at end of data
			2008/08/12,
207.8066	57.6177	KOD1	Strange deviations in 1999.1-1999.9.
207.8066	57.6177	KOD5	No overlap with KOD1 but has similar excursion
			2012.1-2012.3 (but KOD6 only partially sees
			event). USCG site
276.2404	37.1515	KYTK	Systematic with bad antenna: 2013/08/12-
			2014/01/31; then offset
241.7967	33.7878	LBCH	Bad antenna 2000/01/03-2003/02/03 and replaced.
			Still multiyear systematic.
278.1928	28.8262	LEES	Un-modeled offset 2011/09/15.
249.5998	44.5651	LKWY	Yellowstone multiyear systematic changes
241.9966	34.1119	LONG	Probably a failing antenna starting Jan 2007. CWU
205 4151	44.6107	1.071	having problems processing data.
285.4171	44.6197	LOZ1	Noisy with N U annual (removed late 2013).
247.7532	41.5921	LTUT	Bad antenna from start 2002/10/23-2008/04/18
252 5510	10 1 100	264274	large annual in all components
273.7510	12.1489	MANA	Large slow slip events in 2004/10 and
241.7550	22.0201) (ID (C	2012/08/27+2012/09/05 (fast EQ)
241.7559	33.9391	MHMS	Most likely bad antenna from 2000/01/12 to
			2012/02/15 when it was replaced. ASH701945B_M
254 7277	20.0054	MICLI	during bad times.
254.7377	39.9954	NISU	Antenna offsets but no log (ends 2009.5).
243.9323	34.1410	OAES	Failed antenna. 1999/03/05-2007/09/11: Maybe
240 1600	11 1511	OEWO	some data until 2000/10/13.
249.1688	44.4511	OFW2	Long period systematic (Yellowstone)

-			
297.7723	16.7504	OLVN	Skewed in E&U, slow type event in 2009.5
262.3462	16.1512	OXTU	Systematic; 2009.8; break 2012/04/23 (gap) ends
			early 2013.
239.2898	36.2568	P299	Strong ground water signal in all components.
239.7230	36.3044	P300	Very large multiyear deviations (creep on San
			Andreas?)
237.0366	39.8457	P323	Starts 2007.6 and fails 2008.0; ends 2008.1
244.2679	32.7597	P494	Washer on antenna until 2011/09/21 when removed
			(no log entry). Strange height systematic.
240.9996	37.6130	P630	Strong N seasonal with trend change mid-2011.
241.0841	37.6053	P631	Very skewed, strong seasonal all components, trend
			change 2011.8 dNv 11 mm/yr, dUv 13 mm/yr
241.1833	37.5914	P642	Similar to P631 but not soo skewed. Same rate
			changes.
241.1800	37.6770	P646	Large systematic in East and Up (±10 mm
			deviations from linear)
237.8042	41.3448	P656	Large gaps and big snow in 2010, 2011.
238.4742	40.4561	P665	Snow events most years
238.5326	40.4658	P667	Snow events most years
237.8101	46.1800	P690	Snow events: Different in nature to P665 and P667
			(more radon and longer % of year)
237.7977	46.2103	P693	Similar to P690 (these sites will be hard to edit)
237.8358	46.1990	P695	Similar to P690 but with long period rate change.
237.8234	46.1876	P697	Similar to P690 but less extreme; long term east
			variations.
237.7968	46.1898	P699	Similar to P690. Offset in east in mid 2006 (gap)
			already in All_PBO_unkn.eq file.
249.0664	43.7864	P708	Snow events most years but could be edited
			(similar to P665)
249.4885	44.7183	P716	Long-term curvature in NE from 2006-2014.
			Change in rate after gap.
237.8631	46.2446	P792	Gaps in time series with snow events; skewed in N.
			Maybe break in 2012-04 but hard to tell due gap in
			data.
269.8248	36.3703	PIGT	Strange bi-modal in 2000 (start until Apr 2001) and
			then systematic since then with possible rate
			change Apr 2009 (1 mm/yr N largest)
270.6546	36.4742	RLAP	Bad antenna 2005/10/06-2009/08/10 (replaced at
			end)
250.3118	31.3683	SA24	Strange seasonal signal plus broken antenna.
321.5405	72.5796	SMM1	Greenland Summit ice site. Trend change after 29
			m antenna move 2013/07/09
270.8834	13.6971	SSIA	Data 2000/09/28-2010/07/18 has variable large
			offset; rate change in 2012 after large gap.
141.8448	43.5286	STK2	Earthquake looking offset 2003/09/25 with "log",

			unknown offset 2011/03/11 undocumented.
270.2411	38.6113	STL7	Noisy in NE; STL8 looks fine.
209.5797	62.3077	TLKA	Long term systematics and strange seasonal; possible break 2002/11/04 (not documented).
297.8367	16.7643	TRNT	Major slow slip events in 2007, 2010 (same as GERD)
227.0057	69.4382	TUKT	Lots of systematic strange seasonal signals; slow offset E 2013.
261.4357	28.4680	TXTI	Strange multiyear deviations in the North (10mm deviations from linear)
249.7133	44.6395	WLWY	Deviations associated with Yellowstone.

GLOBK Apriori coordinate file and earthquake files

As part of the quarterly analysis we run complete analysis of the time series files and generate position, velocity and other parameter estimates from these time series. These files can be directly used in the GLOBK analysis files sent with the GAGE analysis documentation. These links point to the current earthquake and discontinuity files used in the GAGE ACC analyses: All PBO eqs.eq All PBO ants.eq All PBO unkn.eq. The GLOBK apriori coordinate file All PBO nam08.apr is the current estimates based on data analysis in this quarterly report. Starting in Q06, we added a GLOBK apriori coordinate file based on the latest SNIPS PBO velocity file that are generated monthly. The SNIPS file updates the coordinates and velocities of sites that have changed in some significant fashion since the generation of the primary apriori coordinate file. The current file is All PBO nam08 snips.apr. Both of these apriori files are read with the -PER option in GLOBK (i.e., no periodic terms are applied). In these files, comments have a non-blank character in the first column and text after a! in lines is treated as a comment. The apriori file contains Cartesian XYZ positions and velocities in meters with the epoch of the position in decimal years (day of year divided by days in the specific year). The comments contain the standard deviations of the estimates and are not specifically used in GLOBK (yet). The GEOD lines give geodetic coordinates and not directly used (information only). The EXTENDED lines give the extended parts of the model parameters. Specifically, OFFSETS are NEU position and velocity offsets at the times of discontinuities. The velocity changes are all zero in the PBO analyses. The Type in the comment at the end of line indicates the type of offset. If a name is given then this is an antenna or unknown origin offset. For earthquakes, EQ is the type and two characters after is the code for the earthquake. If postseismic motion is model, then LOG or EXP EXTENDED lines will appear. The time constant of the function is given after the date (days) and the amplitudes in meters in NEU frame is given after that. The comment contains the standard deviations in mm. PERIODIC terms give the period (days) after the date and then cosine and sine terms in NEU. The periodic terms are not used in the standard GLOBK analyses. The comment contains the standard deviations. The GLOBK apriori coordinate file contains annual periodic terms but these are not used in the daily reference frame realization.

When interpreting the offsets in the apriori file, it is important to note that these are obtained for a simultaneous analysis of all data from a site. If the residuals to the fit are systematic, the offsets often will not be the same as an offset computed from analysis of shot spans of data on either side of the offset. We are considering adding such an analysis type in the future.

Snapshot velocity field analysis from the reprocessed PBO analysis.

In our monthly reports, we generate "snapshot" velocity fields in the NAM08 reference frame based on the time series analysis of all data processed to that time. We have now started to distribute the snapshot fields (SNAPS) and the significant updates to the standard PBO velocity file (SNIPS file) in standard PBO velocity field format. These files are distributed in the monthly reports. For this quarterly report, we generate these velocity estimates for the reprocessed results and the current GAGE analyses that are in the NAM08 reference frame. There 2135 sites in the combined PBO solution, 23 more than last quarter, in the analyses and the statistics of the fits to results are shown in Table 4. In this analysis, offsets are estimated for antenna changes and earthquakes. Annual signals are estimated and for some earthquakes, logarithmic post-seismic signals are also estimated. The full tables of RMS fits along with the duration of the data used are given in the following linked files: pbo nam08 150613.tab, nmt nam08 150613.tab and cwu nam08 150613.tab. The velocity estimates are shown by region and network type in Figures 10-16. The color scheme used is the same as Figures 4-9. The snapshot velocity field files are linked as; pbo nam08 150613.snpvel, nmt nam08 150613.snpvel and cwu nam08 150613.snpvel.

Table 4: Statistics of the fits of 2135, 2128 and 2134 sites analyzed by PBO, NMT and CWU in the reprocessed analysis for data collected between Jan 1, 1996 and June 13, 2015.

Center	North (mm)	East (mm)	Up (mm)
Median (50%)			
PBO	1.1	1.2	5.3
NMT	1.1	1.2	5.6
CWU	1.4	1.4	6.0
70%			
PBO	1.5	1.5	6.0
NMT	1.4	1.6	6.2
CWU	1.7	1.7	6.8
95%			
PBO	3.2	3.1	8.9
NMT	3.2	3.1	9.1
CWU	3.5	3.4	10.3

Different tolerances are used for maximum standard deviation in each of the figures so that regions with small velocity vectors can be displayed at large scales without the plots being dominated by large error bar points. The standard deviations of the velocity

estimated are computed using the GLOBK First-order-Gauss-Markov Extrapolation (FOGMEX) model that aims to account for temporal correlations in the time series residuals. This algorithm is also called the "Realistic Sigma" model.

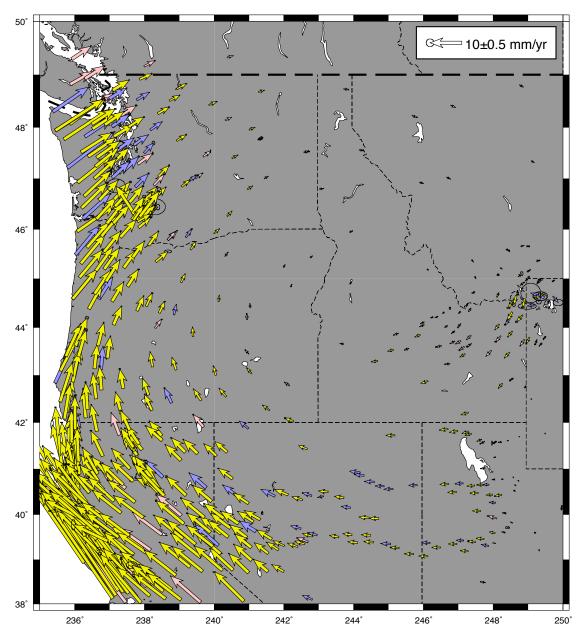
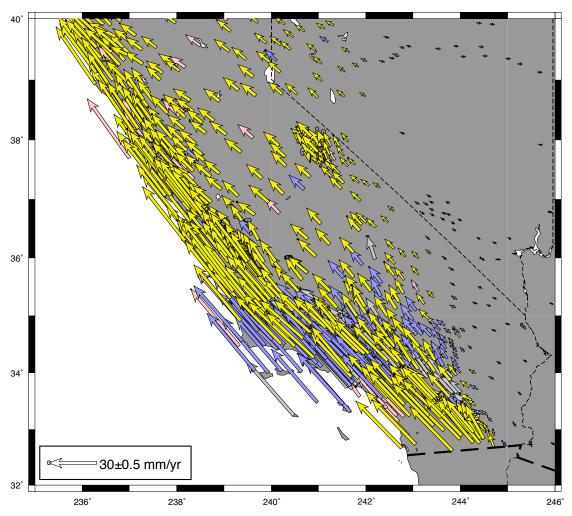
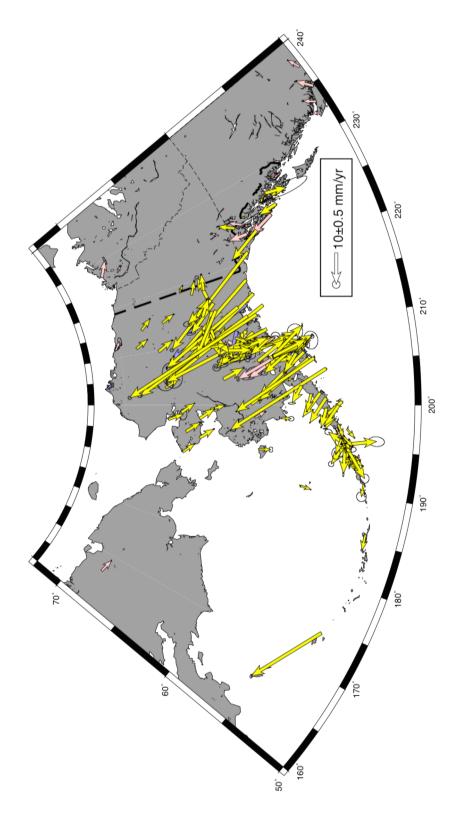
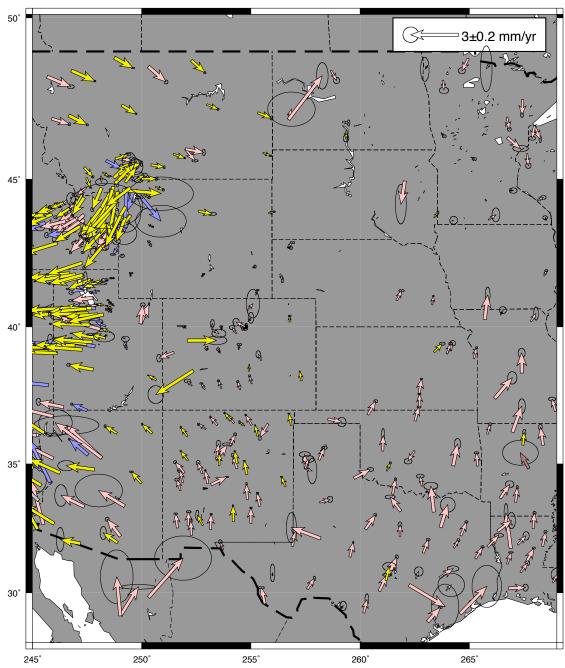

A direct comparison of the NMT and CWU solutions shows the weighted root-meansquare (WRMS) difference between the two velocity fields is 0.09 mm/yr horizontal and 0.59 mm/yr vertical in direct difference of all sites with in 0.5 meters of each other (2144 comparisons). The χ^2/f of the difference is $(1.22)^2$ for the horizontal and $(1.57)^2$ vertical components. These comparisons are summarized in Table 5. As noted in previous reports, adding small minimum sigmas, computed such that χ^2/f is near unity changes the statistic slightly (Table 5). With the FOGMEX correlated noise model used to compute the velocity sigmas, the comparison statistics are close but still 22-57% optimistic over expectations. The 10-worst sites are P801 GPS, AC59 GDN, P613 GHT, MCD1 GPS, NARA GPS, P486 GHT, SAV1 GPS, JNPR GPS, SAV5 GPS, and LST1 GPS. The GHT and GND extensions to the 4-character code indicate that these sites are affected by postseismic motion after the 1999 Hector Mine and the 2002 Denali earthquakes. The difference in velocity estimates arises from different treatments of the Hector Mine and Denali postseismic between the two analyses. The tsfit program has tolerances on the uncertainties on the postseismic log estimates that determine if the parameter is estimated or not. If the uncertainty is too large then it is assumed that there is not enough sensitivity to the parameter (due to the elapsed time from the earthquake to the first data at the site) and the log estimate is removed. For the GHT sites above, the Hector mine postseismic was treated differently in the two analyses i.e., one case they were estimated and the other not estimated. Similarly for AC59_GDN site, the postseismic treatment is different between then NMT and CWU analyses. The SAV5 site appears because there are multiple sites at this location that do not overlap in time. The difference occurs between the (non-overlapping in time) SAV5 and SAV1 sites. LST1 is a site used only a small number of times by NMT (92 days) and is close to 1LSU which is used in both the NMT and CWU analyses. The P801 GPS appears because it has a short span of systematic data compared to the nearby P713 site.

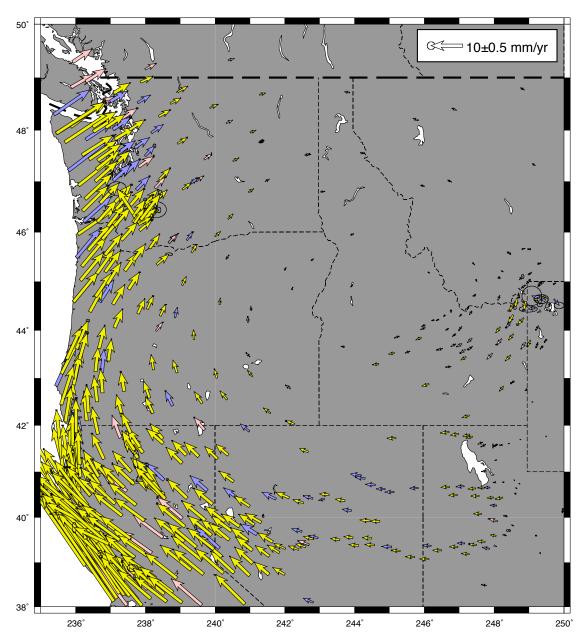
Table 5: Statistics of the differences between the CWU and NMT velocity solutions with no transformation between them. In these comparisons sites with the same names and within 0.5 meters of each other are included and the total number of comparisons is larger than the number of stations. The PBO, NMT and CWU solutions themselves have 2127, 2127 and 2118 sites. WRMS is weighted-root-mean-scatter and NRMS is $\operatorname{sqrt}(\chi^2/f)$ where f is the number of comparisons. Larger numbers of sites appear below because sites with 500 meters of each other are included in the counts.

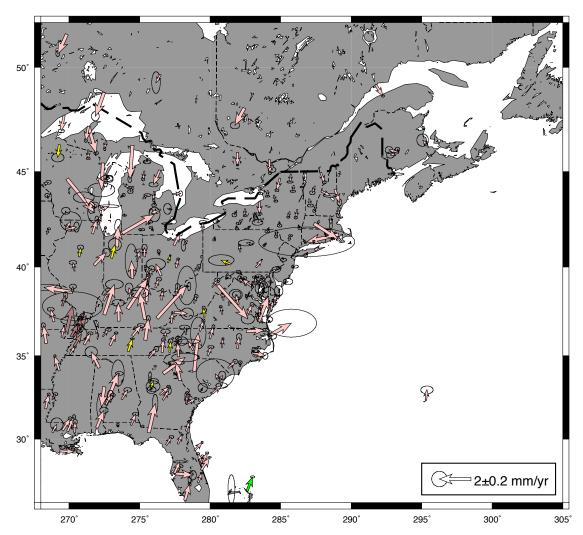

Solution	#	NE WRMS	U WRMS	NE NRMS	U NRMS
_		(mm/yr)	(mm/yr)		
All	2144	0.09	0.59	1.22	1.57
Edited -10 worst	2127	0.08	0.57	1.11	1.52
Less than median	1174	0.07	0.51	1.20	1.60
(0.14 0.44 mm/yr)					

Added minimum sigma NE 0.06 U 0.40 mm/yr


All	2144	0.14	0.78	0/96	1.00	
Edited -10 worst	2127	0.12	0.72	0.96	1.00	
Less than median	1174	0.08	0.57	0.74	0.83	
(0.15 0.0.59						
mm/yr)						


Figure 10: Velocity field estimates from the combined PBO solutions generated using time series analysis and the FOGMEX error model. 95% confidence interval error ellipses are shown. The color scheme of the vectors matches the network type legend in Figure 4. Only velocities with horizontal standard deviations less than 2 mm/yr are shown (this value is reduced from previous reports due the improved velocity sigmas).


Figure 11: Same as Figure 10 except for South Western United States. Only velocities with horizontal standard deviations less than 2 mm/yr are shown.


Figure 12: Same as Figure 10 except for Alaska. Only velocities with horizontal standard deviations less than 5 mm/yr are shown

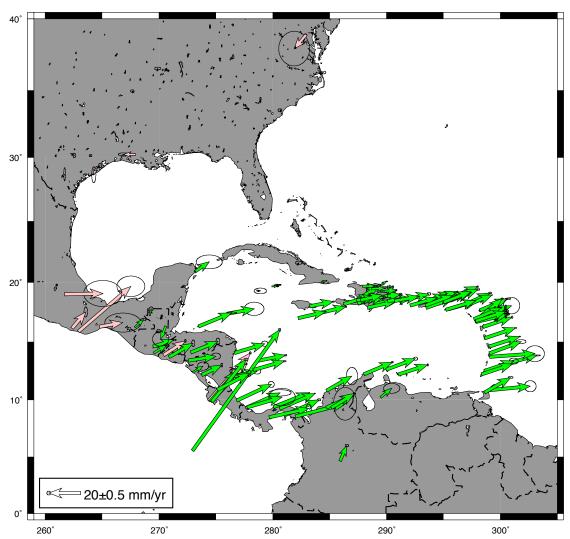

Figure 13: Same as Figure 10 except for Central United States. Only velocities with horizontal standard deviations less than 1 mm/yr are shown.

Figure 14: Same as Figure 10 except for Western Central United States. Only velocities with horizontal standard deviations less than 1 mm/yr are shown. Anomalous vectors at longitude 250° are in the Yellowstone National Park and most likely are showing volcanic processes.

Figure 15: Same as Figure 10 except for the Eastern United States. Only velocities with horizontal standard deviations less than 2 mm/yr are shown. The systematic western velocity of sites in the Northeast is being investigated although profiles from Canada to the Gulf of Mexico indicate that horizontal glacial isostatic adjustment (GIA) horizontal signals may be seen in the velocity results. If this is the case, the North America Euler pole from ITRF2008 may be affected by these motions.

Figure 16: Same as Figure 10 except for the Caribbean region. Only velocities with horizontal standard deviations less than 5 mm/yr are shown.

Earthquake Analyses: 2015/04/01-2015/06/30.

We use the NEIC catalog to search for earthquakes that could cause coseismic offsets at the sites analyzed by the GAGE analysis centers. We examined the following earthquakes. In these output, each earthquake that might have generated coseismic displacements is numbered and the "SEQ Earthquake # n" starts the block of information about the earthquake. The EQ MM lines, give site name, distance from hypocenter (km), maximum distance that could cause coseismic offsets > 1 mm, and the "CoS" (coseismic offset) value is the possible offset in the mm. The eq_def lines give the event number, latitude, longitude, radius of influence, and depth of event followed by the date and time of the event. If an event is found to be significant, the event number is modified to reflect the total number of events so far included in the PBO analyses. Large events are often given a two-character code to reflect their location (e.g., PA is Parkfield).

In March/April 2015 we investigated the following events. * EQDEFS for 2015 03 12 to 2015 04 15 Generated Mon Apr 20 13:08:09 EDT 2015 * Proximity based on Week_All.Pos file * _____ * SEQ Earthquake # 1 * EQ 464 BEMT_GPS 8.42 8.90 CoS 0.0 mm * EQ 464 P601_GPS 5.64 8.90 CoS 0.0 mm * EQ_DEF M3.7 24km S of Twentynine Palms eq_def 01 33.9298 -116.0320 8.9 8 2015 03 27 15 37 0.000 eq rename 01 eq coseis 01 0.001 0.001 0.001 0.000 0.000 0.000 * ______ * SEQ Earthquake # 2 * EQ 549 CDMT GPS 8.16 9.70 CoS 1.0 mm * EQ_DEF M4.0 12km NW of Ludlow eq_def 02 34.7912 -116.2612 9.7 8 2015 03 30 09 22 0.001 eq rename 02 eq coseis 02 0.001 0.001 0.001 0.001 0.001 0.001 * ______ * SEQ Earthquake # 3 * EQ 577 AC12 GPS 10.88 11.00 CoS 1.1 mm * EQ DEF M4.4 11km W of Chernabura Island eq_def 03 54.7814 -159.7371 11.0 8 2015 03 31 06 37 0.002 eq_rename 03 eq_coseis 03 0.001 0.001 0.001 0.002 0.002 0.002 * _____ eq_rename 04

eq_coseis 04 0.001 0.001 0.000 0.000 0.000

eq_def 05 37.7920 -121.9868 8.8 8 2015 04 02 07 07 0.000

* SEQ Earthquake # 5 * EQ 638 P229_GPS 4.78 8.80 CoS 0.0 mm

No offsets were seen form these earthquakes. However there are no rapid results for AC12 and so we can test this event. Given the small magnitude and expected offsets, it is unlikely a significant co-seismic offset occurred.

0.000 0.000

Overall: No significant earthquake events this month.

eq coseis 05 0.001 0.001 0.001 0.000

* _____

* EQ DEF M3.6 1km NNW of San Ramon

eg rename 05

In April/May 2015, the following events were investigated

```
* EQ DEF M4.2 9km NE of Puerto Escondido
 eq_def 02 15.9095 -97.0058 10.2 8 2015 04 23 04 25 0.001
 eq rename 02
eq coseis 02 0.001 0.001 0.001 0.001 0.001 0.001
* ______
* SEQ Earthquake # 3
* EQ 448 CN22_GPS 2.80 11.00 CoS
                                              16.3 mm
* EQ_DEF M4.4 19km WSW of Leon
eq_def 03 12.3601 -87.0384 11.0 8 2015 04 27 14 28 0.002
 eq rename 03
eq_coseis 03 0.001 0.001 0.001 0.002 0.002 0.002
* -----
* SEQ Earthquake # 4
* EQ 574 DSHS_GPS 2.86 9.10 CoS 7.8 mm

* EQ 574 FXHS_GPS 9.03 9.10 CoS 0.8 mm

* EQ 574 NOPK_GPS 2.39 9.10 CoS 11.2 mm

* EQ 574 P800_GPS 2.61 9.10 CoS 9.4 mm

* EQ 574 USC1_GPS 7.27 9.10 CoS 1.2 mm

* EQ 574 WRHS_GPS 7.90 9.10 CoS 1.0 mm
* EQ DEF M3.8 1km WNW of View Park-Windsor Hills
eq_def 04 33.9995 -118.3595 9.1 8 2015 05 03 11 08 0.001
 eq_rename 04
eq_coseis 04 0.001 0.001 0.001
                                  0.001 0.001 0.001
* ______
* SEQ Earthquake # 5
* EQ 583 P262_GPS 8.04 8.90 CoS
                                               0.0 mm
* EQ_DEF M3.6 2km SW of Concord
eq_def 05 37.9647 -122.0473 8.9 8 2015 05 03 22 14 0.000
 eq_rename 05
eq_coseis 05  0.001  0.001  0.000  0.000  0.000
* ______
* SEQ Earthquake # 6
* EQ 667 P262_GPS 8.02 8.70 CoS 0.0 mm
* EQ_DEF M3.5 1km NNE of Pleasant Hill
 eq_def 06 37.9612 -122.0555 8.7 8 2015 05 06 14 33 0.000
eq rename 06
eq_coseis 06  0.001  0.001  0.000  0.000  0.000
* ______
* SEQ Earthquake # 7
                     7.72 9.20 CoS 1.1 mm
* EQ 758 WGPP GPS
* EQ DEF M3.8 16km NW of Grapevine
 eq_def 07 35.0312 -119.0660 9.2 8 2015 05 10 15 43 0.001
 eg rename 07
 eq_rename 07
eq coseis 07 0.001 0.001 0.001 0.001 0.001 0.001
```

No offsets were seen form these earthquakes.

QSEC from eq_def 01 is undergoing large post-seismic motions for a 2012 9 5 earthquake but there is no clear offsets from this event. There appears to be small east offset 1 week before the event that will map into an apparent co-seismic if one were estimated.

There is no rapid data from CN22 so we can not test eq def 03 event.

For eq_def 04, there are not offsets at NOPK or P800 at the time of the earthquake. There is no recent data from DSHS but it is unlikely that this site was displaced if NOPK and P800 were not displaced.

Overall: No significant earthquake events this month.

In May/June 2015, the following events were investigated but none show co-seismic offsets.

- * EQDEFS for 2015 05 12 to 2015 06 14 Generated Tue Jun 16 11:59:58 EDT 2015
- * Proximity based on Week_All.Pos file

```
* SEQ Earthquake # 1
* EQ 336 P507_GPS 6.27 9.80 CoS 1.6 mm
* EQ DEF M4.1 14km NNW of Westmorland
eq_def 01 33.1623 -115.6638 9.8 8 2015 05 21 03 16 0.001
eq rename 01
eq_coseis 01 0.001 0.001 0.001
                                 0.001 0.001 0.001
* ______
* SEQ Earthquake # 2
* EQ 363 P264_GPS 4.87 9.80 CoS 2.7 mm
* EQ_DEF M4.1 10km ENE of Yountville
eq_def 02 38.4317 -122.2502 9.8 8 2015 05 22 02 54 0.001
eq_rename 02
eq_coseis 02  0.001  0.001  0.001  0.001  0.001
* ______
* SEQ Earthquake # 3
* EQ 537 AC13_GPS 99.39 128.50 CoS 5.6 mm
* EO DEF M6.7 111km NNW of Chirikof Island
eq_def 03 56.5940 -156.4300 128.5 8 2015 05 29 07 01 0.872
eq rename 03
eq_coseis 03 0.001 0.001 0.001 0.872 0.872 0.872
* SEQ Earthquake # 4

* EQ 555 KYVW_GPS 5.77 9.00 CoS 0.0 mm

* EQ 555 P600_GPS 6.00 9.00 CoS 0.0 mm

* EQ_DEF M3.7 18km NNE of Indio
eq_def 04 33.8778 -116.1500 9.0 8 2015 05 30 05 24 0.000
 eq rename 04
eq coseis 04 0.001 0.001 0.000 0.000 0.000
* -----
* SEQ Earthquake # 5
* EQ 591 P486_GPS 7.10 8.80 CoS 0.0 mm
* EQ DEF M3.6 11km NE of Borrego Springs
 eq_def 05 33.3135 -116.2817 8.8 8 2015 05 31 13 03 0.000
eg rename 05
 eq_coseis 05  0.001  0.001  0.000  0.000  0.000
```

P264 was affected by the Aug 24 2014 M6.0 6km NW of American Canyon earthquake but the aftershock here did not seem to displace the site.

AC13 does seem to be offset M6.7 111km NNW of Chirikof Island at 2015 05 29 07 01 but there are no data around the time of the earthquake. There are no equipment changes in the UNAVCO data base. We will label this event #35. The estimated offsets are: WLS dN -6.38 +- 2.22 mm, dE 3.26 +- 2.50 mm, dU 4.09 +- 10.51 mm KF dN -6.31 +- 1.23 mm, dE 3.01 +- 0.92 mm, dU 3.46 +- 3.89 mm. Since one one site is affected and there are no data within a week of the event, we cannot generate a standard Event file for this earthquake.

The other earthquakes generated no measurable offsets. We did note that the CWU rapid solutions for KYVW are noisy compared to NMT (~2 mm NE scatter compared with 1 mm; 7.3 verus 3.4 mm in height).

Antenna Change Offsets: 2015/04/01-2015/06/30

The follow antenna changes were investigated and reported on in the MIT ACC monthly reports.

```
Site
          Date
                        From
                                       To
CN35 2015 3 6 0 0 TRM57971.00
                                   TRM59800.00
                                   TPSCR.G3
LL01 2015 3 6 21 29 TRM57971.00
MACC
     2015
           3 26 20 54
                      ASH700936D M TRM57971.00
     2015
           3 25 13 16
                      LEIAT504
                                   LEIAR10
     2015
NYFS
          3 24 16 42
                      LEIAT504
                                   LEIAR10
     2015 3 27 0 0
                      TRM29659.00
P263
                                   TRM59800.80
P432
     2015 3 28 0 0
                      TRM29659.00
                                   TRM59800.00
P462
     2015 3 11 22 20
                      TRM29659.00
                                   TRM59800.80
P471
     2015 3 10 22 14
                      TRM29659.00
                                   TRM59800.80
P555
     2015 3 12 0 0
                      TRM29659.00
                                   TRM59800.80
P619
     2015
           3 10
                0 16
                      TRM29659.00
                                   TRM59800.80
PSDM
          3 17
     2015
                2 15 ASH701945B M TPSCR.G3
     2015 4 8 0 0
MKEA
                      AOAD/M T
                                   JAVRINGANT DM
P014 2015 4 19 19 33 TRM29659.00
                                   TRM59800.80
P041 2015 4 9 0 0
                      TRM29659.00
                                   TRM59800.80
P312 2015 4 29 19 21 TRM29659.00
                                   TRM59800.80
     2015 4 28 17 47 TRM29659.00
P444
                                   TRM59800.80
P729
     2015 4 24 16 5
                      TRM29659.00
                                   TRM59800.00
     2015 4 29 19 5
SC02
                      TRM29659.00
                                   TRM59800.80
     2015 5 6 15 0
IDDR
                      LEIAX1202GG
                                   LEIAR10
KYTH 2015 5 6 13 29
                      TRM55971.00
                                   TRM57971.00
NYLV
     2015 5 20 15 28
                      LEIAT504
                                   LEIAR10
NYWT
     2015 5 21 15 36 LEIAT504
                                   LEIAR10
P182 2015 5 6 0 0 TRM29659.00
                                   TRM59800.80
     2015 5 6 0 0
P183
                      TRM29659.00
                                   TRM59800.80
     2015 5 15 0 0
2015 5 8 0 0
P215
                      TRM29659.00
                                   TRM59800.80
P689
                      TRM29659.00
                                   TRM59800.00
     2015 5 7 19 48
P694
                      TRM29659.00
                                   TRM59800.80
P701 2015 5 8 0 0
                      TRM29659.00
                                   TRM29659.00
P701 2015 5 21 0 0 TRM29659.00
                                   TRM59800.80
```

Analysis

- CN35: WLS dNEU 2.26 +- 0.84, -1.82 +- 0.84, 15.28 +- 2.61 mm, KF dNEU 2.04 +- 0.34, -2.18 +- 0.40, 14.79 +- 1.38 mm. The height offset is clear, the horizontal terms are not obvious
- LL01: WLS dNEU -2.60 +- 2.25, 0.89 +- 1.61, 5.84 +- 6.31 mm, KF dNEU -1.13 +- 0.26, 0.25 +- 0.23, 10.80 +- 0.88 mm. The height offset is clear, the horizontal terms are not obvious.
- MACC: WLS dNEU 5.19 +- 4.06, 5.35 +- 2.73, -8.00 +- 9.17 mm, KF dNEU 5.53 +- 0.43, 5.17 +- 0.38, -8.76 +- 1.52 mm. The offsets can be seen in all components. A few data were removed at the time of the change due to processing with the incorrect antenna type.
- NYFD: WLS dNEU 2.01 +- 2.54, -0.20 +- 2.69, 4.49 +- 8.15 mm, KF dNEU 1.66 +- 0.47, 0.36 +- 0.40, 6.71 +- 1.64 mm. Annual signals were estimated for this site as well
- NYFS: WLS dNEU -0.16 +- 1.13, 4.38 +- 2.01, 4.48 +- 3.66 mm, KF dNEU -0.31 +- 0.44, 5.03 +- 0.38, 4.55 +- 1.54 mm. Annual signals were estimated and some values at the time of the break have been removed.

- P263: WLS dNEU -3.77 +- 3.38, 0.34 +- 3.40, -1.08 +- 7.49 mm, KF dNEU -0.59 +- 0.39, 2.67 +- 0.34, -2.53 +- 1.29 mm. Annual estimated, the KF estimates with significant East offset and insignificant North offset match the visual impressions of the time-series.
- P432: WLS dNEU -5.12 +- 1.96, 4.97 +- 1.89, 7.41 +- 6.60 mm, KF dNEU -5.31 +- 0.41, 4.79 +- 0.33, 4.47 +- 1.26 mm. Annual estimated, offsets are clear.
- P462: WLS dNEU 1.90 +- 1.88, 2.45 +- 0.47, 0.55 +- 3.47 mm, KF dNEU 0.86 +- 0.32, 2.73 +- 0.26, -0.66 +- 1.04 mm. Annual estimated (small), North residuals are skewed to the South. East offset visible in time-series.
- P471: WLS dNEU 2.61 +- 0.56, 2.59 +- 3.05, 3.77 +- 4.67 mm, KF dNEU 2.36 +- 0.30, 2.39 +- 0.30, 2.71 +- 1.15 mm. No Annual: There seems to another break 2015 3 24 that partly removes the North offset seen on 2015 3 10. If the second offset is estimated, the north offset increases to 4.78 mm followed by a -3.57 mm offset (KF estimates, +- 0.5 mm). The east offset is only partly reduced (3.19 mm and -1.19mm, +- 0.5 mm)
- P555: WLS dNEU 5.55 +- 1.00, 7.66 +- 1.67, 1.27 +- 4.04 mm, KF dNEU 5.46 +- 0.27, 6.02 +- 0.27, -0.37 +- 0.97 mm. No annual: North positions skewed north and height skewed down. Small east skewness.
- P619: WLS dNEU 1.24 +- 2.37, -3.56 +- 0.48, -2.12 +- 2.70 mm, KF dNEU 0.13 +- 0.33, -3.19 +- 0.26, -2.51 +- 1.00 mm. East offset clear in time-series.
- PSDM: WLS dNEU -2.52 +- 3.21, 2.59 +- 1.20, 2.79 +- 7.38 mm, KF dNEU -2.09 +- 0.30, 2.09 +- 0.27, -0.68 +- 1.03 mm. Some bad data in ;late 2009 removed so as to not bias estimates.
- MKEA: WLS dNEU -1.77 +- 8.49, -0.83 +- 12.35, -1.67 +- 30.10 mm, KF dNEU -4.86 +- 0.52, -2.22 +- 0.66, -8.76 +- 2.10 mm. Large gap until new antenna installed so difficult to judge robustness.
- P014: WLS dNEU 0.34 +- 1.98, -3.49 +- 3.85, -4.08 +- 2.32 mm, KF dNEU 0.57 +- 0.35, -1.89 +- 0.36, -3.95 +- 1.20 mm. East offsets looks clear. Height might be due to sytematics.
- P041: WLS dNEU -4.52 +- 0.68, 0.05 +- 0.72, 0.23 +- 3.44 mm, KF dNEU -4.06 +- 0.21, 0.23 +- 0.20, 2.11 +- 0.70 mm. North offset very clear. CWU solutions in east are corrupt after the antenna change and these bad estimates corrupt the PBO solution. The above estimates are from the NMT solution.
- P312: WLS dNEU 4.02 +- 4.95, -6.21 +- 1.47, -10.03 +- 13.90 mm, KF dNEU 2.89 +- 0.81, -6.72 +- 0.63, -6.47 +- 3.32 mm. Offsets are clear in the time-series. Height has large amplitude oscillation after mid-2014. There is not enough datayet to see if the new antenna rectifies this oscillation.
- P444: WLS dNEU -1.19 +- 2.30, -2.77 +- 1.71, 2.28 +- 13.86 mm, KF dNEU -1.24 +- 0.64, -2.80 +- 0.51, -1.20 +- 2.00 mm. Offset look small in the time-series.
- P729: WLS dNEU -4.86 +- 10.06, -2.26 +- 6.91, -24.29 +- 32.71 mm, KF dNEU -0.88 +- 0.48, -0.87 +- 0.41, -9.65 +- 1.78 mm. Systematic height seasonal and trend changes make WLS estimate too large in height. The KF estimate is closer to the appearance in the time-series.

- SC02: WLS dNEU 1.32 +- 2.99, 2.49 +- 3.75, -3.41 +- 8.27 mm, KF dNEU 2.32 +- 0.59, 1.25 +- 0.45, -4.51 +- 1.79 mm. ETS events make the WLS estimate here somewhat unreliable.
- IDDR: WLS dNEU 18.27 +- 3.61, -10.48 +- 5.25, -20.28 +- 7.34, mm, KF dNEU 16.92 +- 0.38, -8.62 +- 0.35, -18.96 +- 1.13, mm. Very apparent large break at this site
- KYTH: WLS dNEU -4.21 +- 2.70, 6.29 +- 4.12, -4.44 +- 4.69, mm, KF dNEU -2.27 +- 0.46, 1.22 +- 0.52, -2.93 +- 1.41, mm. Antenna seems to go bad on ~March 01 and so we have added a removed data command for 2015 3 1 0 0 2015 5 6 13 29
- NYLV: WLS dNEU 4.90 +- 2.34, -2.33 +- 2.57, 4.24 +- 9.42, mm, KF dNEU 5.06 +- 0.49, -1.47 +- 0.41, 5.66 +- 1.68, mm. Some outliers while the ACs implemented the antenna change.(should be OK in finals run)
- NYWT: WLS dNEU -0.29 +- 1.53, -6.84 +- 3.44, 4.33 +- 12.61, mm, KF dNEU -0.45 +- 0.69, -6.10 +- 0.57, 5.77 +- 2.40 mm. As with NYLV, some outliers especially in height (should be OK in finals run).
- P182: WLS dNEU 4.14 +- 1.38, -5.58 +- 0.87, -4.18 +- 4.24, mm, KF dNEU 2.97 +- 0.25, -4.82 +- 0.22, -4.97 +- 0.85, mm. East offset can be seen in data.
- P183: WLS dNEU 4.24 +- 1.43, 0.14 +- 0.97, -7.78 +- 5.26, mm, KF dNEU 3.11 +- 0.26, 1.24 +- 0.22, -8.61 +- 0.88, mm. Both North and East offsets are clear.
- P215: WLS dNEU 1.84 +- 3.76, -2.03 +- 2.84, -9.91 +- 11.99, mm, KF dNEU 1.75 +- 0.37, -1.95 +- 0.32, -9.92 +- 1.35, mm. Sites show evidence on degradation leading up to the site being cleared in late 2014 (no data Dec 17 and Jan 14). Added and unknown break (2015 01 01) for the change at this time.
- P689: WLS dNEU 2.33 +- 1.12, 2.46 +- 3.85, -0.01 +- 3.65, mm, KF dNEU 3.02 +- 0.26, 2.07 +- 0.27, -2.43 +- 0.78, mm. Evidence of snow effects at site as well. Systematics in east with ~5-10 mm slows event in June/July 2009 and 21011.
- P694: Break from Oct 30 2014 to antenna switch. Offset can't be reliably estimated (snow effects at site as well).
- P701: WLS dNEU 1.15 +- 1.40, 2.32 +- 5.50, 0.50 +- 5.88, mm, KF dNEU 1.54 +- 0.52, 3.61 +- 0.43, -0.38 +- 1.64, mm and WLS dNEU 3.28 +- 1.76, -0.39 +- 6.88, 4.08 +- 7.41, mm, KF dNEU 3.29 +- 0.63, -0.37 +- 0.50, -4.09 +- 2.03, mm. The first offset is a change of serial number of the same antenna type (offset in north). The second change is a change in antenna type (offset in east).

We have added the following unknown cause discontinuities and data edits to the PBO analyses. If there is no end date in time range, the change is ongoing. In some cases here these entries will record the failure time of an antenna that is later noted in the site logs to have changed.

Rename	Date Range	Explanation
SA63 SA63_APS	2010 4 5	27 mm E No log entries
	2012 4 18	
SA63 SA63 BPS	2012 4 18	few mm NE, -11 mm U
_	2014 12 17	,
SA63 SA63 CPS	2014 12 17	Very large jump -142 N,216 E 5 U mm.

YWG1 YWG1_APS	2012 7 4	Mostly a height change of 87 mm (N trend change recenty (2013) as well)
KYTH KYTH APS	2015 3 10	North (10 mm), Height (-47 mm) mostly
CSHR CSHR_XCL	2014 8 11	Antenna seems to go bad and then fail.
	2014 10 20	
P238 P238_APS	2012 4 17	-9 mm North, East and Up are very small. Large
		annual signals in East mostly.
NOCO_GPS	2000 10 20	Most likely event before antenna change. Long
NOCO_APS	2001 4 23	term curvature in North
EOCG EOCG_APS	2014 12 13	Unknown large break in North (-31 mm),
	2015 1 11	smaller east break at second epoch
EOCG EOCG_BPS	2015 1 11	Smaller east break
KYTH KYTH_XPS	2015 3 1	Antennas apparently goes bad before
	2015 5 6	replacement
	13 29	
P215 P215_APS	2015 1 3	Looks like vegetation being cut
	2015 1 15	

Reanalysis with updated NMT Yucca Mountain sites

We have now completed incorporating the NMT updates to the reprocessing that added the Yucca mountain sites between GPS weeks 1004 to 1646 (1999/04/04-2011/07/30). This update also fixed some but not all the metadata problems in the original NMT reprocessing results during this interval. All of the times series have now been updated and updated results sent to UNAVCO. The updated SINEX files have been queued with LDM to UNAVCO but crossing files between MIT and UNAVCO shows that many SINEX files have not yet been successfully transferred. Even with repeated LDM transfers the files do not seem to make the transfer to the UNAVCO FTP area. We have a new system for LDM (replacement everest.mit.edu machine) and it is currently being configured and files transferred from the old raids to the new raids.

We have noticed that the height RMS scatters with this updated processing seem to have degraded a little while the horizontal RMS scatters have improved by a small amount. There is nothing specific that can be seen in the time series that explains the differences. We have nearly completed the new complete PBO velocity field based on SINEX analyses rather than time series analyses and when this is complete we will look again the height RMS fits when the NAM08 frame is aligned to the new realization.

Script updates

No major changes have been to the scripts.

GAMIT/GLOBK Community Support

During this quarter we finished a new release (10.60) of the software and distributed the source files, scripts, and tables to the over 1000 institutions currently holding licenses.

(Many of these are likely not actively using the software, but we have no easy way of tracking that.) This release included the structural modifications to support GNSS observations other than GPS and changes to plotting scripts to be compatible with GMT 5, as well as the usual bug fixes, minor feature enhancements, and additions of supported receivers and antennas described in previous quarterly reports.

There were no UNAVCO-sponsored data-analysis workshops during this period, but we continue to spend 5-10 hours per week in email support of users. During the quarter we issued 16 royalty-free licenses to educational and research institutions,